免费无码又爽又黄又高潮,成人av无码一区二区三区,久久福利一区二区,中文字幕在线观看不卡

  • 技術文章ARTICLE

    您當前的位置:首頁 > 技術文章 > LIBS元素分析技術應用于植物金屬元素分布快速Mapping

    LIBS元素分析技術應用于植物金屬元素分布快速Mapping

    發(fā)布時間: 2018-11-12  點擊次數(shù): 4565次

        AtomTrace是歐洲工程技術中心(CEITEC)的衍生公司,公司成員均為布爾諾大學激光光譜與化學分析實驗室的科研人員。實驗室起始于1997年,在LIBS應用技術研發(fā)領域具有近20年的深厚經驗,其研制生產的Sci-Trace LIBS元素分析系統(tǒng)獲得捷克國家2016年年度合作獎。而在此之前,AtomTrace團隊曾在歐洲LIBS元素分析大賽中斬獲優(yōu)異成績

    使用Sci-Trace,便意味著得到了的專業(yè)團隊技術支持和實驗室合作。

         

    LIBS技術相較于其它元素分析方法,有其*和不可替代的優(yōu)勢

    § 較XRF技術無法檢測輕元素的遺憾而言,LIBS可以檢測所有元素;

    § 較ICP-MS等傳統(tǒng)方法,樣品無須預處理, 固、液、氣態(tài)樣品都可直接檢測,實時分析;

    § 測量速度可達1秒鐘20次,單次測量即可同時定性、半定量檢測元素周期表中所有元素;

        不同的營養(yǎng)及礦物質含量,極大的影響植物的生長和代謝對于環(huán)境的響應。元素測量一直采用ICP-OES或者AAS的傳統(tǒng)方法,缺點是樣品預處理復雜,容易引入新的雜質并造成測量誤差。但關鍵的是,無法得到元素分布的空間信息。而如若分布模式不同,即使含量相近,對植物生理狀態(tài)的影響也差異巨大。而LIBS技術可以在植物活體狀態(tài)下無須預處理進行元素mapping掃描快速分析,恰恰彌補了這一缺憾。LA-ICP-MS技術同也可進行元素分布掃描,但仍存很多問題有待克服:激光燒蝕樣品經載氣運送至ICP,會在運送管中有顆粒物殘留; ICP中大顆粒氣化不*;記憶效應(前次測量對下次測量結果的影響);霧化室及運送管中的死角對信號強度和持續(xù)時間的影響;必須在同一位置多次測量才能獲得足夠強的信號等等。因此對于植物中元素分布的測量,LIBS被認為是有前景的測量技術。

        ?AtomTrace研究團隊很早就關注到LIBS技術在植物科學領域的應用。2006年,Jozef Kaiser博士(AtomTrace CEO、布爾諾科技大學光譜技術實驗室主任)等即在European Physical Journal上發(fā)表了“Femtosecond laser spectrochemical analysis of plant samples”,應用libs技術對山茱萸整個葉片中的Fe、Mn元素進行分布mapping研究。當時在該實驗中,F(xiàn)e的LOD(檢測限)已經做到5ppm。

     

        AtomTrace團隊應用LIBS技術在植物元素分析領域一直在孜孜不倦的探索,優(yōu)化算法、開發(fā)軟件、優(yōu)化儀器-----例如用真空反應室、雙激發(fā)技術等提高mapping分辨率,開發(fā)AtomAnalyzer光譜數(shù)據(jù)分析軟件將計算速度提高10倍,研制紫外真空模塊檢測0-300nm紫外光區(qū)域譜線等。測試對象既有活體植物,也有干枯樣品;包括植物根、莖、葉等植物各部分組織;植物種類包括旱生植物,也包括高水分含量的水生植物;定性定量測量的元素涉及對植物有重要影響的AlCa、CMg、P、Si、Sr、Zn、B、CuFe、Mn、Pb、K、S、Na、Cl、H、N、Ni、Ba、Ag等等。并發(fā)表植物LIBS分析領域高影響因子文章如下:

    • Pavlína M, Karel N, Pavel P, Jakub K, P?emysl L, Helena Z. G, Kaiser J, Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. [J], Ecotoxicology and Environmental Safety, 147 (2018) 334–341.
    • Krajcarová L, Novotný K, Kummerová M, J. Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS) [J], Talanta 173 (2017) 28–35.
    • Lucie K, Novotny K, Petr B, Ivo P, Petra K, Vojtech A, Madhavi Z. Rene K, Kaiser J, Copper Transport and Accumulation in Spruce Stems Revealed by Laser-Induced Breakdown Spectroscopy, [J]. Electrochemical Science, 8 (2013) 4485 – 4504.
    • Zitka O, Krystofova O, Hynek D, et al. Metal Transporters in Plants [M]. Heavy Metal Stress in Plants. 2013: 19-41.
    • Kaiser J, Novotny K, Martin M Z, et al. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications [J]. Surface Science Reports, 2012, 67 (11–12): 233-243.
    • Michaela G, Jozef K, Karel N, et al. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum I. leaves [J]. Microscopy Research and Technique, 2011, 74 (9): 845-852.
    • Diopan V, Shestivska V, Zitka O, et al. Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead (II) Ions [J]. Electroanalysis, 2010, 22 (11): 1248-1259.
    • Kaiser J, Galiova M, Novotny K, et al. Utilization of the Laser Induced Plasma Spectroscopy for monitoring of the metal accumulation in plant tissues with high spatial resolution [J]. Networking IEEE/ACM Transactions on, 2010, 20 (4): 1096-1111.
    • Kaiser J, Galiova M, Novotny K, et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64 (1): 67-73.
    • Krystofova O, Shestivska V, Galiova M, et al. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions [J]. Sensors, 2009, 9 (7): 5040-5058.
    • Kaiser J, Galiova M, Novotny K, et al. Mapping of the heavy-metal pollutants in plant tissues by Laser-Induced Breakdown Spectroscopy [C] Spectrochimica Acta Part B 64 (2009) 67–73.
    • Galiova M, Kaiser J, Novotny K, et al. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry [J]. Applied Physics A, 2008, 93 (4): 917-922.
    • Sona K, Pavel R, Olga K, et al. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution [J]. Sensors, 2008, 8 (1): 445-463.
    • Stejskal K, Mendelova Z, et al., Study of effects of lead ions on sugar beet [J]. Listy Cukrovarnicke A Reparske, 2008, 124 (4): 116-119.
    • Galiova M, Kaiser J, Novotny K, et al. Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62 (12): 1597-1605.
    • Kaiser J, Samek O, Reale L, et al. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy [J]. Microscopy Research and Technique, 2007, 70 (70): 147-153.

    AtomTrace團隊應用LIBS技術進行植物中金屬元素分布的研究案例

    研究案例一

    浮萍(Lemna minor L.)是金屬元素環(huán)境污染的指示物種,也是常被用于金屬毒害和富集作用研究的模式生物。本案例中,AtomTrace團隊應用LIBS技術對浮萍做元素分布mapping,比較研究Cd鹽和QDs中的Cd元素在浮萍中的富集模式;并應用傳統(tǒng)ICP-OES技術對不同含Cd化合物在浮萍中的含量和富集進行測量;同時應用TEM方法探究QDs的富集位置---浮萍表面、細胞內部、還是植物組織內。 

    注:Cd離子在2015年275種重要有害物質清單中*7。含Cd量子點(QDs)通常由直徑3-6 nm 的CdS、CdSe、PbSe及CdTe和其它一些金屬元素構成,其外覆有有機聚合物。由于其染料效果優(yōu)于其它生物染料所以大量排放至水域中并在水中釋放出Cd離子,所以研究Cd量子點對生物的毒害作用有重要的應用意義。

    使用雙激發(fā)LIBS技術研究Cd元素在浮萍小葉中的分布情況

    實驗方法:

    § 浮萍葉片分別在含鎘化合物CdCl2MPA-QDs  GSH-QDs 溶液(該三種溶液濃度皆分別設為三個梯度:0.1、 1 10 mg/L)中處理。將小葉貼于載玻片上制作樣品; 

    § LIBS測量采用正交雙激發(fā)。一次激發(fā)激光波長266nm,脈沖能量10mJ;二次激發(fā)激光波長1064nm,脈沖能量1064mJ;兩次激發(fā)激光脈沖長度均為5nm。每次測量均將葉片擊穿。

    § 掃描測量分辨率:200 μm;

    § Cd檢測主譜線:508.58 nm;

     

     

    Fig. 4 Cd量子點及Cd鹽處理下浮萍小葉元素mapping圖像

    實驗結論:

    § CdCl2和Cd-QDs污染,對于Cd元素在浮萍葉片表面分布的影響無區(qū)別;

    § 濃度不同,對于Cd元素在浮萍葉片表面分布的影響無區(qū)別;

    § 實驗中三種含鎘化合物(CdCl2、MPA-QDs、GSH-QDs)濃度升高,LIBS檢測信號皆隨之增強;

    § 莖結處Cd元素富集作用明顯高于其它組織

    引自:Pavlína, M., Karel, N., Pavel, P., J, K., P, L., H, Z.G., Jozef, K., 2018. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. [J]. Ecotoxicology and Environmental Safety 147 (2018) 334–341

    研究案例二

    對植物組織的元素進行LIBS mapping分析,可以通過譜線位置判別元素種類,通過譜線強度得到元素濃度,而元素mapping圖像可以得到元素分布、以及若干種元素的相關位置分布信息。而在同一位置連續(xù)測量,即可得到元素剖面分布的3D信息。

    Fig. 5 所示實驗研究:

    Fig. 5 A:萵苣葉片上,Pb元素對Mg元素分布的影響。Mg是葉綠素的關鍵金屬,而Pb元素對葉綠素卻有更強的親和性,因此葉片中Pb濃度上升時,Mg濃度下降。

    Fig. 5 B:Pb處理使玉米葉片中Pb濃度增加。

    Fig. 5 C:植物對金屬離子毒害的抗性各不相同。如圖中所示向日葵葉片中,Pb處理對Mg元素的分布無影響。該實驗結果與形態(tài)學分析實驗結果一致。

    Fig. 5 D:LIBS技術也可應用于植物其它組織中的元素分析。如圖中所示松樹枝條的雙激發(fā)LIBS測量所得的3D元素分布圖。

     

    Fig. 5

    引自:Jozef, K., Karel, N., et al., Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications. Surface Science Reports 67 (2012) 233–243

    研究案例三

    根部對于植物養(yǎng)分供應、保護植物避免受到過量金屬離子的毒害方面發(fā)揮著重要作用,但是根部元素分析的難度要遠遠大于對莖部組織,原因包括:根通常要比莖和芽細小很多;干物質含量小很多,為樣品切割帶來很大不便;通常待分析元素相對含量較低;而柔軟多汁的樣品如何保持其結構形狀以得到元素分布的正確結果,同樣是個難題。

    AtomTrace針對上述挑戰(zhàn),在本案例中進行了成功的探索 --- 應用雙激發(fā)LIBS技術對蠶豆幼苗根部納米銀顆粒(直徑為21.7±2.3 nm)進行mapping分析,目標是對自然狀態(tài)下的植物組織進行元素檢測,獲得高mapping分辨率的同時確保檢測靈敏度。這同時也是整個LIBS領域中,對植物根部納米顆粒分布情況的初次嘗試。

    LIBS雙激發(fā)技術 --- 即每次采集的測量信號,都為兩次激光脈沖激發(fā)。如此可減輕燒蝕擾動并提高mapping分辨率;同時兩次激發(fā)可增強信號,以獲得可重復性更高、更優(yōu)LOD(檢測限)的檢測結果。

    實驗參數(shù):二次激發(fā)脈沖能量分別為5MJ@266nm和100MJ@1064nm,間隔為500ns;測量頻率為1次/秒;實驗在1個大氣壓下進行。

    實驗材料:蠶豆幼苗,分辨在AgNP溶液、Cu+和Ag+離子溶液處理7天,做40μm厚切片進行LIBS mapping測量。

    實驗結果:由以下實驗結果可見,LIBS技術檢測速度快;即使對直徑只有2mm的幼根,也可對其橫切面中的金屬離子及金屬納米顆粒分布進行mapping分析,檢測的度和圖像分辨率足以滿足實驗需求。應用雙激發(fā)技術,Mapping分辨率可達到50μm,足以區(qū)分根表皮層、皮層、中柱中的元素分布特征。

    此外,7天的短時間處理即可檢測結果,說明對自然環(huán)境中、自然養(yǎng)分條件下的植物來說,LIBS 元素mapping也是元素分布檢測行之有效的實驗方法,因此將是植物生理學和環(huán)境毒理學領域中的有效應用。

     

    Fig. 6 蠶豆幼苗根橫切進行分辨率為50μm的單線測量后,燒蝕坑情況

     

    Fig.7 Cu+溶液處理蠶豆幼苗根橫切不同分辨率下mapping結果:100μm、75μm、50μm

     

    Fig.8 不同濃度Cu2+溶液【a) 100 μmol l−1 Cu2+ ;b)50 μmol l−1 Cu2+;c) 10μmol l−1 Cu2+; d) 0 μmol l−1 Cu2+】處理蠶豆幼苗根橫切mapping結果;e)樣品區(qū)特征譜線;f)Cu2+濃度降低,其對應譜線強度也依次降低

     

    Fig.9  Cu2+、Ag+、AgNPs處理7日后的蠶豆幼苗根部橫切的顯微圖像和元素mapping對應結果引自:Krajcarová L, Novotný K, Kummerová M, J. Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS) [J], Talanta 173 (2017) 28–35. 

        北京易科泰生態(tài)技術有限公司是由科學家創(chuàng)建并為科學家提供科技服務的高新技術企業(yè),是AtomTrace公司在中國(包括香港、中國臺灣地區(qū))的代理和技術咨詢服務中心。易科泰生態(tài)技術公司在青島、西安設有分公司,在全國各地設有辦事處,北京總部設立有 EcoLab 實驗室以提供實驗研究合作、儀器技術培訓等。

成人免费看mv网站入口| 日韩高清小说| 亚洲精华液一二三产区| 91人妻人人做人碰人人爽九色 | 亚洲色青青草| www99热| 搜索欧美一区二区三区| 久久亚洲二区| 2021年精品国产福利在线| 老少配老妇老熟女中文普通话| 另类重口bbwsexhd| 日韩一二三区特黄片| 欧美日韩亚州国产| 亚洲欧美精品午睡沙发| 黑人干少妇| 平阴县| 久久A无码| 亚洲免费一区| 久久r色| 五月丁香婷婷激情| 国产99r| www.久久爱白液流出h好爽| 日韩高清无码综合网| 一本久久香蕉| jiz日本视频| 亚洲激情在线观看中字| 亚洲AV无码一区二区久久精品| 日韩欧美电影成人| 91精品久久久久久久久入口| 国产精品95页| 伊人网视频| 久久久久无码精品国产电影| 亚洲大片在线观看| 高清免费不卡SV视频| 久久国产一一区| 欧美成人精品一区二区男人看| 新人影院| 久久久久Av免费无码久久| 中文字幕一区二区三区四区乱| 五月丁香旧综合视频| 五月d|