服務(wù)熱線
-
果蠅高通量呼吸代謝測(cè)量技術(shù)
發(fā)布時(shí)間: 2021-07-27 點(diǎn)擊次數(shù): 1553次易科泰生態(tài)技術(shù)公司提供高通量果蠅呼吸代謝測(cè)量全面解決方案:
1.高分辨率、高通量果蠅能量代謝測(cè)量,8通道、16通道直至64通道供選配
2.高通量、高靈敏度果蠅采食行為在線監(jiān)測(cè)技術(shù)方案
3.可分辨“品嘗"行為和“采食"行為及食性選擇行為
4.應(yīng)用于生物醫(yī)學(xué)、健康醫(yī)學(xué)、神經(jīng)科學(xué)、遺傳性、進(jìn)化生態(tài)學(xué)、發(fā)育生物學(xué)等實(shí)驗(yàn)研究
部分參考文獻(xiàn):
Alex C Keene, PhD, Sleep-Dependent Modulation of Metabolic Rate in Drosophila, Sleep, Volume 40, Issue 8, August 2017, zsx084,
Arce C C, Th Eepan V, Schimmel B C, et al. Plant-associated CO2 mediates long-distance host location and foraging behaviour of a root herbivore[J]. eLife Sciences, 2021, 10:e65575.
Bawa S, Brooks D S, Neville K E, et al. Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth[J]. eLife Sciences, 2020, 9.
Bethany A Stahl, PhD, Melissa E Slocumb, BS, Hersh Chaitin, MS, Justin R DiAngelo, PhD,
Careau V, PP Beauchamp, Bouchard S, et al. Energy metabolism and personality in wild-caught fall field crickets[J]. Physiology & Behavior, 2019, 199:173-181.
Dweck H, Carlson J R. Molecular Logic and Evolution of Bitter Taste in Drosophila[J]. Current biology: CB, 2019, 30(1).
Hoekstra L A, Julick C R, Mika K M, et al. Energy demand and the context-dependent effects of genetic interactions[J]. Evolution Letters, 2(2):102-113.
Horn CJ, Mierzejewski MK, Elahi ME, Luong LT. Extending the ecology of fear: Parasite-mediated sexual selection drives host response to parasites. Physiol Behav. 2020 Oct 1;224:113041. doi: 10.1016/j.physbeh.2020.113041. Epub 2020 Jun 30. PMID: 32619526.
Joseph R M, Sun J S, Edric T, et al. A receptor and neuron that activate a circuit limiting sucrose consumption[J]. eLife,6,(2017-03-19), 2017, 6.
Kubrak O, Jensen L, Ahrentloev N, et al. The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. 2020.
Luo Y, Johnson J C, Chakraborty T S, et al. Yeast volatiles double starvation survival in Drosophila[J]. Science Advances, 2021, 7(20):eabf8896.
Mallard, F., Nolte, V., Tobler, R. et al. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol 19, 119 (2018).
Matoo O B, Julick C R, Montooth K L. Genetic Variation for Ontogenetic Shifts in Metabolism Underlies Physiological Homeostasis in Drosophila[J]. Genetics, 2019, 212(2).
May C E, Vaziri A, Lin Y Q, et al. High dietary sugar reshapes sweet taste to promote feeding behavior in Drosophila melanogaster[J]. Cell reports, 2019, 27(6): 1675-1685. e7.
Mishra P, Yang S E, Montgomery A B, et al. The fly liquid-food electroshock assay (FLEA) suggests opposite roles for neuropeptide F in avoidance of bitterness and shock[J]. BMC Biology, 2021, 19(1).
Mothersill C, Vo N, Lemon J, et al. The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans Nematode to Background and Below-Background Radiation Levels[J]. Frontiers in Public Health, 2020, 8:581796.
Neville K E, Bosse T L, Klekos M, et al. A novel ex vivo method for measuring whole brain metabolism in model systems[J]. Journal of Neuroscience Methods, 2018, 296:32-43.
Rajpurohit S, V Vrkoslav, Hanus R, et al. Post-eclosion temperature effects on insect cuticular hydrocarbon profiles[J]. Ecology and Evolution, 2020.
Schilder R J, Raynor M. Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster[J]. Journal of Experimental Biology, 2017, 220(19):3508-3518.
Suh, G., Wong, A., Hergarden, A. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).
Zorana Kurbalija Novii,et al. Lithium influences whole-organism metabolic rate in Drosophila subobscura[J]. Journal of Neuroscience Research, 2020(6).