服務熱線
產(chǎn)品展示PRODUCTS
品牌 | 易科泰 | 價格區(qū)間 | 面議 |
---|---|---|---|
產(chǎn)地類別 | 國產(chǎn) | 應用領域 | 醫(yī)療衛(wèi)生,環(huán)保,生物產(chǎn)業(yè),農業(yè),綜合 |
熒光光纖氧氣測量技術具有高精確度、高可靠性、響應時間短、適用于氣相和液相等優(yōu)勢,因此隨著技術的問世,精確、高通量測量微小生物的呼吸和評估其能量代謝成為可能。高通量呼吸測量系統(tǒng)基于熒光光纖氧氣測量技術,能夠對斑馬魚的胚胎及幼魚進行測量,測定其耗氧量,進而評估其代謝水平。系統(tǒng)在生物醫(yī)學、實驗生物學、污染生態(tài)學與環(huán)境毒理學、環(huán)境科學、氣候變化研究等領域具有越來越重要的應用價值。
系統(tǒng)由內置熒光光纖氧氣傳感器的微型呼吸室、氧氣測量主機及數(shù)據(jù)采集分析軟件組成,可對96個通道的樣品進行同步測量。
功能特點
l 氧氣測量高精度、高可靠性、低功耗、低交叉敏感性、快速響應時間
l 輕松校準
l 非侵入性和非破壞性測量
l 緊湊設計,適用于溫控培養(yǎng)箱和/或搖床
技術參數(shù)
1. 檢測技術:光纖氧傳感器技術。
2. 適用場景:原位檢測,可在培養(yǎng)箱里或搖床上使用,便于溫度控制。
3. 呼吸室:透明聚苯乙烯材質,支持預消毒處理,可重復使用。
4. 氧氣測量主機:單個重670 g,162 x 102 x 32 mm
5. 主機內置溫度傳感器:0-50°C,分辨率0.012°C,精度±0.5°C
6. 主機內置壓強傳感器:300-1100mbar,分辨率0.11mbar,精度±6mbar
7. 最大采樣頻率:單通道激活時可達10-20次每秒
8. 氧氣測量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
9. 氧氣測量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L
10. 電源:5VDC,USB供電
11. 響應時間<30s
12. 通道數(shù):96
13. 系統(tǒng)適配其他魚類的胚胎及幼魚
14. 可選配斑馬魚成魚的靜態(tài)及動態(tài)呼吸測量系統(tǒng)
參考文獻
1. Feng, W.-W., Chen, H.-C., Audira, G., Suryanto, M.E., Saputra, F., Kurnia, K.A., Vasquez, R.D., Casuga, F.P., Lai, Y.-H., Hsiao, C.-D., Hung, C.-H., 2024. Evaluation of Tacrolimus’ Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. Biology (Basel) 13, 112.
2. Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
3. Heuer, R.M., Wang, Y., Pasparakis, C., Zhang, W., Scholey, V., Margulies, D., Grosell, M., 2023. Effects of elevated CO2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 280, 111398.
4. K?mmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
5. Louhi, P., Pettinau, L., H?rk?nen, L.S., Anttila, K., Huusko, A., 2023. Carryover effects of environmental stressors influence the life performance of brown trout. Ecosphere 14, e4361.
6. Mandic, M., Pan, Y.K., Gilmour, K.M., Perry, S.F., 2020. Relationships between the peak hypoxic ventilatory response and critical O2 tension in larval and adult zebrafish ( Danio rerio ). Journal of Experimental Biology jeb.213942.
7. Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
8. Moore, B., Jolly, J., Izumiyama, M., Kawai, E., Ryu, T., Ravasi, T., 2023. Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. Science of The Total Environment 873, 162296.
9. Park, K.-H., Ye, Z., Zhang, J., Hammad, S.M., Townsend, D.M., Rockey, D.C., Kim, S.-H., 2019. 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 9, 1138.
10. Ricarte, M., Prats, E., Montemurro, N., Bedrossiantz, J., Bellot, M., Gómez-Canela, C., Raldúa, D., 2023. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Science of The Total Environment 896, 165240.
11. Saputra, F., Lai, Y.-H., Roldan, M.J.M., Alos, H.C., Aventurado, C.A., Vasquez, R.D., Hsiao, C.-D., 2023. The Effect of the Pyrethroid Pesticide Fenpropathrin on the Cardiac Performance of Zebrafish and the Potential Mechanism of Toxicity. Biology 12, 1214.
12. Schuster, L., Cameron, H., White, C.R., Marshall, D.J., 2021. Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences 118, e2104942118.
13. Scovil, A.M., Boloori, T., de Jourdan, B.P., Speers-Roesch, B., 2023. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). Marine Pollution Bulletin 191, 114976.
14. Varshney, S., Gora, A.H., Kiron, V., Siriyappagouder, P., Dahle, D., K?gel, T., ?rnsrud, R., Olsvik, P.A., 2023. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. Science of The Total Environment 859, 160457.
15. Varshney, S., Gora, A.H., Siriyappagouder, P., Kiron, V., Olsvik, P.A., 2022. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials 424, 127623.
16. Varshney, S., Lund?s, M., Siriyappagouder, P., Kristensen, T., Olsvik, P.A., 2024. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. Ecotoxicology and Environmental Safety 269, 115796.
17. Wang, Y., Pasparakis, C., Grosell, M., 2021. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio ). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 321, R377–R384.